Das Dreistoffsystem Kupfer-Germanium-Silber.

Von

H. Nowotny und K. Bachmayer.

Aus dem I. Chemischen Laboratorium der Universität Wien.

Mit 5 Abbildungen.

(Eingelangt am 31. Dez. 1949. Vorgelegt in der Sitzung am 12. Jan. 1950.)

Die Herstellung der Legierungen erfolgte durch Zusammenschmelzen der metallischen Komponenten bzw. über deren Vorlegierungen im Gesamtgewicht von etwa 10 g in unglasierten Porzellantiegeln unter Schutzsalz. Es wurden verwendet: Kupfer (99,9%, Hopkin und Williams-London), Silber (99,9%, Scheid-Wien), Germanium (99,999%, Prof. P. W. Schenk-Innsbruck¹). Die Tiegel erlitten beim Schmelzen keinerlei merklichen Angriff; allerdings fand ein teilweiser Abbrand statt, der den Ge-Gehalt um rund 1% senkte. Die Reguli wurden daher analysiert.

Das Zustandsdiagramm Cu-Ge ist auf Grund der Arbeiten von *R. Schwarz* und *G. Elstner*², *H. Maucher*³ und insbesondere durch die ausführliche Untersuchung von *F. Weibke*⁴ weitgehend sichergestellt. Röntgenographisch wurden ferner die Gitterkonstanten im α -Gebiet durch *W. Hume-Rothery*, *G. F. Levin* und *P. W. Reynolds*⁵ sowie *E. A. Owen* und *E. W. Roberts*⁶ vermessen. Die β -Phase (Cu₅Ge) gehört nach *H. Maucher*³ zum A 3-Typ und die gleiche Struktur fand *V. M. Goldschmidt*⁷ für die bei Raumtemperatur unmittelbar anschließende ε -Phase⁸ (Cu₃Ge). Das System Ag—Ge weist nach *T. R. Briggs, R. O. McDuffie*

² R. Schwarz und G. Elstner, Z. anorg. allg. Chem. 217, 289 (1934).

⁷ V. M. Goldschmidt, Z. physik. Chem. 133, 397 (1928).

⁸ Bezeichnung nach F. Weibke, loc. cit.

¹ Herrn Prof. *Schenk* sind wir für die Überlassung des Germaniums zu Dank verpflichtet.

³ H. Maucher, Forschungsarbeiten über Metallkunde und Röntgenmetallographie, Folge 20 (1936).

⁴ F. Weibke, Metallwirtsch., Metallwiss., Metalltechn. 15, 299 (1936).

⁵ W. Hume-Rothery, G. F. Levin und P. W. Reynolds, Proc. Roy. Soc. (London), Ser. A 157, 163 (1938).

⁶ E. A. Owen und E. W. Roberts, Philos. Mag. J. Sci. 7, 27, 294 (1939).

und L. H. Willisford⁹ ebenso wie Ag—Cu¹⁰ ein einfaches Eutektikum¹¹ auf. Über das Dreistoffsystem Cu—Ge—Ag fanden wir in der Literatur keinerlei Angaben.

Die Paare Cu—Ge und Ag—Ge wurden in einzelnen Punkten mikrographisch und röntgenographisch mit Hilfe von Pulveraufnahmen überprüft, wobei wir zu einer weitgehenden Bestätigung der obigen Ergebnisse gelangten. Allerdings fanden wir für die β -Phase in Cu—Ge kleinere Gitterkonstanten als von *Maucher* angegeben (Tabelle 1). Daß die Werte nach *Maucher* um etwa 1% zu hoch liegen, geht auch aus dem Vergleich seiner Daten für Cu₃Ge mit jenen von *Goldschmidt* hervor.

Tabelle 1. Gitterkonstanten der β -Phase. Eigene Messung (14,3 At.-% Ge): a = 2,578 k X.E., c/a = 1,632. Maucher (14 bis 18 At.-% Ge): a = 2,606 bis 2,616, c = 4,284 bis 4,264 k X.E.

Was nun die ε -Phase (Cu₃Ge) betrifft, so zeigte sich, daß der A 3-Typ nur eine erste Näherung darstellt. Es bestehen nämlich zwar geringe, aber deutlich feststellbare Aufspaltungen der (1120)-, (2020)-, (1122)-, (2021)- und (2022)-Interferenzen¹² im Röntgenogramm (Tabelle 2). Die Indizierung der Pulveraufnahme gelingt mit einer monoklinen Elementarzelle: a = 2,626, b = 4,192, c = 4,559 k X.E., $\beta = 89^{\circ} 41'$ auffallend gut. Es handelt sich demnach um eine schwache monokline Deformation der orthorhombisch aufgestellten Zelle des A 3-Typs, wobei $c \sim a \sqrt{3}$ (4,559 statt 4,548 k X.E.) ist. Die Auslöschungsgesetze: (h k l) nur mit h + l = 2 n und (0 k 0) nur mit k = 2 n führen zu den charakteristischen Raumgruppen C_{2h}^2 bzw. C_2^2 . Um eine zur hexagonal dichten Packung ganz nahe verwandte Struktur zu erreichen, müssen die 4 Atome auf zweizähligen Lagen der Raumgruppe C_2^2 bzw. in 2 e von C_{2h}^2 : x y z, $\overline{x} \frac{1}{2} + y \overline{z}$ mit $x = 0, y = 0, z = \frac{\overline{1}}{6}; x' = \frac{1}{2}, y' = 0, z' = \frac{1}{3}$ untergebracht werden.

Mit diesen Parametern — einfache monokline Verzerrung der hexagonalen Elementarzelle — erhält man eine sehr befriedigende Übereinstimmung zwischen gefundenen und berechneten Intensitäten, wobei statistische Verteilung von Kupfer und Germanium vorausgesetzt wird. Trotz des weitgehend gesicherten Strukturvorschlages wäre eine Überprüfung durch E. K.-Aufnahmen erwünscht.

 $\mathbf{670}$

⁹ T. R. Briggs, R. O. McDuffie und L. H. Willisford, J. physic. Chem. 33, 1080 (1929).

¹⁰ Siehe *M. Hansen*, Der Aufbau der Zweistofflegierungen. Berlin: Springer-Verlag. 1936.

¹¹ Vgl. auch *H. Maucher*, loc. cit.

¹² Hexagonale Indizierung.

Index			109 1.90		
nach Goldschmidt	monoklin	$10^3 \sin^2 \Theta$	10° sin² Ø ber.	Int. gesch.	Int. ber.
$egin{array}{c} eta \ (10\overline{10}) \ eta \ (0002) \end{array}$	$egin{array}{c} eta \ eta \ eta \end{array} \ eta \ eta \ eta \end{array}$	$148,9 \\ 175,3$		sehr schwach sehr schwach	
x (1010)	$\begin{cases} \alpha \ (002) \ (101) \\ \alpha \ (101) \end{cases}$	179,9	179,9 181,6	mittel	9,6
$egin{array}{c} eta \ (1011) \ lpha \ (0002) \end{array}$	$\beta \propto (020)$	192,2 213,2	212,8	mittel mittel	9,7
α (1011)	$\begin{cases} \alpha (012) (11\overline{1}) \\ \alpha (111) \end{cases}$	233,6	$\begin{array}{c}233,1\\234,8\end{array}$	sehr stark	31,2
β (1012)	β	324,1		$\operatorname{sehr} \operatorname{schwach}$	—
$\propto (10\overline{12})$	$\begin{cases} \alpha (022) (121) \\ \alpha (121) \end{cases}$	394,3	392,7 394,4	mittel	4,3
β (1120)	$\underline{\beta}$	446,0	·	s. s. schwach	-
$\propto (11\overline{2}0)$	$\begin{cases} \ \alpha \ (103) \\ \ \alpha \ (103) \ (200) \end{cases}$	$\begin{array}{c} 538,4\\543,6\end{array}$	$538,1 \\ 543,2$	schwach mittel	$2,3 \\ 4,6$
	α (113)	—	591,3		0
$\beta \ (20\overline{2}0)$	β	593,7		s. s. schwach	
	$(113) \\ (210)$		$\begin{array}{c} 596,4\\ 596,4\end{array}$		0
β (1122)	eta	621,0		sehr schwach	
β (2021)	β	634, 5	—	s. s. schwach	
α (1013)	$\left\{\begin{array}{c} \alpha \ (032) \ (13\overline{1}) \\ \alpha \ (131) \end{array}\right.$	659,5	$\begin{array}{c} 658,7 \\ 660,4 \end{array}$	stark	8,1
$\propto (20\overline{2}0)$	$\begin{cases} \alpha (004) (20\overline{2}) \\ \alpha (202) \end{cases}$	$720,0 \\ 726,3$	719,8 726,6	sehr schwach s. s. schwach	1,2 0,6
α (1122)	$\int \alpha (1\overline{23})$	751,5	750,9	mittelschwach bis schwach	4,7
	α (123) (220)	756,0	756,0	stark	7,2
α (2021)	$\begin{cases} \alpha \ (014) \ (212) \\ \alpha \ (212) \end{cases}$	773,1 779,6	773,0 779,7	mittelstark mittelschwach	5,5 3,7
α (0004)	α (040)	851,1	851,2	mittelschwach	2,9
$\propto (20\overline{2}2)$	$\begin{cases} \alpha (024) (22\overline{2}) \\ (222) \end{cases}$	932,1	932,5	mittelschwach bis mittel	3,3
	$(\alpha (222))$	939,0	939,3	schwach	2,3

Tabelle 2. Pulveraufnahme von Cu₃Ge (24,4 At.-% Ge) mit Intensitätsberechnung (Fe-K-Strahlung).

Der Befund, wonach Cu₃Ge keinen reinen A 3-Typ hat, ist nicht weiter verwunderlich, da bereits die β -Phase in einem solchen Gitter kristallisiert. Man würde sich andernfalls fragen müssen, warum β und ε durch einen schmalen heterogenen Bereich getrennt sind. Ferner lehrt ein Vergleich mit den benachbarten Systemen Cu—Al, Ga, In, Si, Sn, P, As, Sb, daß zwar eine Cu₃X-Phase in allen Fällen auftritt, aber ein einheitlicher Gittertyp nicht besteht. Cu₃Al (Ga, vermutlich In) haben A 2-Typ, die Hochtemperaturphase Cu_3Sb kristallisiert in dem dazu verwandten Überstrukturtyp DO_3^{13} und Cu_3Si soll einem krz.-Gitter ähnlich sein^{14, 15}. Cu_3Sn hat nur in erster Näherung A 3-Typ¹⁶; ähnlich liegen die Verhältnisse bei Cu_3Sb , wo ursprünglich für die Tieftemperaturmodifikation eine hexagonal dichte Packung angegeben wurde. Nach neueren japanischen Arbeiten¹⁷ liegen jedoch mehrere Phasen in dem fraglichen Gebiet vor, die sämtliche Überstrukturen des A 3-Typs besitzen. Gegenüber der Überstruktur bei Cu_3Sn handelt es sich bei Cu_3Ge nicht um das Auftreten sehr schwacher Reflexe infolge geordneter Verteilung.

Nach eigenen Gefügebeobachtungen löst Silber bei 650° etwa 8,1 At.-% Ge. Die röntgenographische Untersuchung des Ag-M. K. konnte die von *Maucher* angegebene sehr beträchtliche Gitterverengung nicht bestätigen. Es zeigt sich praktisch keine Gitteränderung: $a_w = 4,077_7$ bis $4,078_2$ k X. E. [Vermessung der Rückwärtsinterferenzen α (511), (333) an Pulveraufnahmen mit Cu-K-Strahlung]. Es sei ausdrücklich bemerkt, daß die gefundenen Differenzen nahe der Fehlergrenze liegen. Nach der Radiengröße¹⁸ hätte man für Substitution eine ganz schwache Kontraktion zu erwarten. Auf die Andeutung eines Minimums in der Gitterkonstantenkurve, wie es sich mehrfach aus Messungen ergab, sei in Anbetracht des sehr geringen Effektes nicht näher eingegangen.

Bei der Untersuchung des Dreistoffsystems haben wir die polymorphe Umwandlung von $\delta \rightarrow \varepsilon$ (Cu₃Ge) sowie die von *Weibke* angegebene Anomalie in der Liquiduslinie bei etwa 25 At.-% Ge nicht berücksichtigt.

Gefügeuntersuchung im Dreistoffsystem.

Die Zusammensetzung der hergestellten Legierungen ist aus Tabelle 3 ersichtlich. Sie wurden 48 Stdn. bei 500° homogenisiert und dann abgeschreckt. Zur Festlegung des Cu (α)-Bereiches erfolgte ferner eine Homogenisierung bei 700°. Auf die Bestimmung der Mischkristallbereiche von Ag und Ge wurde verzichtet.

Zur Schliffherstellung benutzten wir fein geschlämmte Tonerde, als Ätzmittel 10% (NH₄)₂S₂O₈ (Ätzdauer 10 bis 20 Sek.).

¹³ W. Hofmann, Z. Metallkunde 33, 373 (1941).

¹⁴ S. Arrhenius und A. Westgren, Z. physik. Chem., Abt. B 14, 66 (1931).

¹⁵ Merklich verschieden sind bereits Cu₃P und Cu₃As, die nicht mehr als Überstrukturen der dichten Packung bzw. des raumzentrierten Gitters gedeutet werden können. Dagegen besteht bei Cu—As eine Cu-reichere Phase mit A 3-Typ. Vgl. *F. Machatschki*, Zbl. Mineral., Geol., Paläont., Abt. A **1929**, 371.

¹⁶ J. D. Bernal, Nature (London) 122, 54 (1928).

¹⁷ A. Osawa und N. Shibata, Sci. Rep. Tôhoku Imp. Univ. 28, 1 (1939).
¹⁸ Vgl. J. D'Ans und E. Lax, Taschenbuch für Chemiker und Physiker.
Berlin: Springer-Verlag. 1943.

Der Cu (α)-Raum verjüngt sich mit abnehmender Temperatur ähnlich stark wie die Löslichkeit von Silber in Kupfer. Der doppelt gesättigte Punkt hat bei der Temperatur des Vierphasengleichgewichtes: S + Cu (α) =

Abb. 1. Gefüge einer Legierung mit 48,9% Cu, 11,0% Ge, 40,1% Ag. Primär: Ag-Mk. (hell); Sekundär: binäres Eutektikum Ag-Mk. (hell) + + Cu₅Ge (dunkel). 300fach.

Abb. 2. Gefüge einer Legierung mit 50,9% Cu, 15,2% Ge, 33,9% Ag. Primär: Aus γ durch Umsetzung entstandene Kristalle (Cu₃Ge, Cu₅Ge); ternäres Eutektikum: Cu₃Ge + Cu₅Ge + Ag-Mk. 300fach.

= Cu₅Ge + Ag-Mk. die ungefähre Zusammensetzung: 87% Cu, 11% Ge und 2% Ag.

Die Legierungen Nr. 4, 7, 8 und 22 sind zweiphasig und zeigen neben primärem $Cu(\alpha)$ das binäre Eutektikum: $Cu(\alpha) + Ag-Mk$. Das Gefüge und Legierung Nr. 14 ist abenfalle

von Legierung Nr. 14 ist ebenfalls zweiphasig (Abb. 1). Man sieht darauf neben primär ausgeschiedenen hellen Ag-Mischkristallen binäres Eutektikum: Ag-Mk. + Cu₅Ge. Weitgehend analog ist die Legierung Nr. 11. In Legierung Nr. 21 kristallisiert Cu₅Ge primär und sekundär wieder binäres Eutektikum: Cu₅Ge+Ag-Mk. Das Gefüge der Legierung Nr. 13 läßt die durch peritektische Umsetzung entstandenen dunklen Cu₃Ge-Kristalle in der helleren Grundmasse des ternären Eutektikums: Cu₃Ge + $+ Cu_5Ge + Ag-Mk.$ erkennen (Abb. 2). Reste umhüllter Primär-

Abb. 3. Gefüge einer Legierung mit 40,6% Cu, 25,9% Ge, 33,5% Ag mit ternärem Eutektikum: Cu₃Ge (dunkel) + Ge (grau) + Ag-Mk. (hell). 1000fach.

kristallite der γ -Phase (Cu₄Ge) sind noch erkennbar. Die Homogenisierung bei 500° hat demnach zur Gleichgewichtseinstellung nicht völlig aus-

gereicht. Das Schliffbild der Legierung Nr. 20 zeigt neben der Primärkristallisation von Ag-Mk. und Sekundärkristallisation von Ag-Mk. + + Cu₃Ge das ternäre Eutektikum: Ag-Mk. + Cu₃Ge + Cu₅Ge. Die Legierungen Nr. 17, 18 und 19 sind durchwegs zweiphasig; bei Legierung Nr. 17 kristallisiert Cu₃Ge, bei den beiden anderen Ag-Mk. primär; sekundär findet man stets das binäre Eutektikum: Cu₃Ge + Ag-Mk. Das Gefüge von Legierung Nr. 12 geht aus Abb. 3 hervor: Primär ausgeschiedene Cu₃Ge-Kristalle, Sekundärkristallisation: Cu₃Ge + Ge und das ternäre Eutektikum: Cu₃Ge + Ge + Ag-Mk. Derselbe Befund gilt für die Legierung Nr. 15. Bei Legierung Nr. 16 kristallisiert ebenfalls zuerst Cu₃Ge, sekundär jedoch: Cu₃Ge + Ag-Mk., tertiär wieder das Eutektikum: Cu₃Ge + Ag-Mk. + Ge.

Thermische Analyse.

Sie wurde zur ungefähren Festlegung der Schmelzflächen und Reaktionstemperaturen durchgeführt. Wegen der geringen Menge des zur Verfügung stehenden Germaniums konnten nur die charakteristischen

Nr. der Legierung	Zusammens	setzung in Ato	mprozenten	Reaktionstemperatur in °C					
	Cu	Ge	Ag		ur in 0				
1	97,0	1,6	1,4	1					
2	94,7	2,5	2,8						
3	94,3	4,4	1,3						
4	91,8	3,1	5,1						
5	91,4	5,3	3,3						
6	90,2	8,2	1,6						
7	83,9	7,5	8,6		thermisch nicht untersucht				
8	84,0	10,0	6,0						
9	84,2	12,3	3,5						
10	83,5	15,6	0,9						
11	48,9	11,7	39,4						
12	40,6	25,9	33,5	1					
13	50,9	15,2	33,9)					
14	48,9	11,0	40,1		675		$650 \ { m H^{19}}$		
15	41,7	25,7	32,6		605		$520~\mathrm{H}$		
16	48,6	19,4	32,0		660	610	$520~\mathrm{H}$		
17	51,0	18,0	31,0		670		$610~{ m H}$		
18	40,0	13,6	46,4		680		$610~{ m H}$		
19	40,0	15,0	45,0		670		$610~{ m H}$		
20	45,8	13,5	40,7		650^{20}		$545~\mathrm{H}$		
21	60,0	10,0	30,0		780	740	685^{20}		
22	63,0	8,7	28,3		830		$710~{ m H}$		

Tabelle 3. Zusammensetzung der Legierungen und Ergebnisse der thermischen Analyse.

¹⁹ H bedeutet Haltepunkt.

²⁰ Werte unsicher.

Zusammensetzungen auf diese Weise untersucht werden. Die Ergebnisse finden sich in Tabelle 3 wieder.

Auf Grund der thermischen Analyse sowie der mikrographischen Untersuchungen lassen sich zwei ternäre Peritektika und zwei ternäre Eutektika feststellen (Abb. 4). Die vom binären Eutektikum E_2 und

Abb. 4. Schmelzflächen im Zustandsdiagramm Cu-Ge-Ag.

vom Peritektikum P_1 ausgehenden Schmelzrinnen münden in das ternäre Peritektikum P_{T_1} (etwa 52% Cu, 11% Ge, 37% Ag bei ungefähr 685°), wo die Reaktion S + Cu(α) = Cu₅Ge + Ag-Mk. stattfindet. Der entsprechende Haltepunkt ist infolge Verzögerungserscheinungen nicht sehr ausgeprägt. Die von den beiden binären Peritektika P_2 und P_3 ausgehenden Rinnen laufen nach dem ternären Peritektikum P_{T_2} (etwa 51% Cu, 15% Ge, 34% Ag bei ungefähr 640°) und schnüren das Gebiet der Primärkristallisation der γ -Phase ab. Dem Punkt kommt die Reaktion: S+Cu₄Ge= = Cu₃Ge + Cu₅Ge zu. Der ternäre eutektische Punkt E_{T_1} hat die Zusammensetzung von etwa 50% Cu, 13% Ge und 37% Ag; die Vierphasenebene liegt bei 545°. Auf ihr enden die von P_{T_1} und P_{T_2} kommenden Schmelzrinnen sowie die über den Sattel des Schnittes Cu₃Ge—Ag-Mk. führende Rinne. Schließlich liegt das ternäre Eutektikum: Cu₃Ge + + Ag-Mk. + Ge bei etwa 33% Cu, 23% Ge, 44% Ag und erstarrt bei 520°.

Zur Kontrolle der auftretenden festen Phasewn urden von den Legierungen Nr. 11, 12 und 13 Pulveraufnahmen gemacht. Die dabei erhaltenen Ergebnisse decken sich mit den oben angegebenen vollständig.

Abb. 5. Isothermer Schnitt bei 500° im Zustandsdiagramm Cu-Ge-Ag.

Eine ternäre intermetallische Verbindung konnte in keinem Falle gefunden werden. Damit ergibt sich mit großer Wahrscheinlichkeit bei 500° die in Abb. 5 dargestellte Aufteilung der Phasenfelder, unter denen das Dreiphasenfeld: $Cu_3Ge + Ag-Mk. + Ge$ besonders ausgedehnt ist.

Das Viereck der peritektischen Reaktion: $S + Cu_4Ge = Cu_3Ge + Cu_5Ge$ ist wegen der mangelhaften Kenntnis der Löslichkeit von Ag in β , γ und ε nicht genau festzulegen²¹, doch ließ sich einwandfrei nachweisen, daß die β -Phase mindestens 1% Ag löst.

²¹ Diese Reaktion verlangt, daß die Löslichkeit von Ag in β und ε größer als in γ ist.

	Angriff in g/m ² . Tag						
Angreifende Lösung	Cu rein		Cu—Ge 92,2 % Cu 7,8 % Ge		Cu—Ge—Ag 91,4% Cu 5,3% Ge 3,3% Ag		Bemerkung
	20°	40°	20°	40°	20°	40°	
1% NH ₃	16,0	21,2	16,7	28,0	18,2	32,0	schwarze Oxyd- schicht
3% NaCl-Lösung.	3,6	5,1	7,5	10,5	6,6	6,8	grünlicher Be- lag (basische Karbonate und Chloride)
1% Oxalsäure	4,5	12,8	6,0	17,2	7,5	21,6	· · ·
1% Essigsäure	4,0	15,4	5,6	22,0	6,9	24,0	
1% H ₂ SO ₄	8,8	21,5	11,2	28,5	12,4	28,3	
1% HCl	35,0	50,0	36,0	62,0	40,0	66,0	_
1% HNO ₃ 10% alkoholische	11,0	24,0	12,4	28,6	12,8	32,0	
Lösung	0,2	0,2	0,2	0,4	0,2	0,3	dunkle Anlauf- farben

Tabelle 4. Korrosionsangriff von Cu-Ge-Ag-Legierungen.

	Angriff in g/m ² . Tag							
Angreifende Lösung	Ag	rein	AgGe 94,2% Ag 5,8% Ge					
	20°	40°	20°	40°				
1% NH ₃	kein Angriff	0,4	0,6	0,6				
3% NaCl-Lösung	0,2	0,3	0.2	0.5				
1% Oxalsäure	kein	0,2	kein	0,3				
	Angriff		Angriff	-				
1% Essigsäure	kein	kein	kein	0,2				
	Angriff	Angriff	Angriff					
1% H ₂ SO ₄	kein	0,2	kein	0,4				
	Angriff		Angriff					
1% HCl	0,4	0,8	0,4	1,0				
1% HNO ₃	0,1	0,2	0,1	0,2				
10% alkohol. Lösung	kein Angriff	kein Angriff	kein Angriff	kein Angriff				

Korrosionsuntersuchungen.

An Blechen homogener Cu—Ge- und Cu—Ge—Ag-Legierungen (α -Bereiche) wurden Korrosionsprüfungen in verschiedenen Lösungen bei 20° und 40° durchgeführt. Miteinbezogen wurde Ag—Ge²² und $\overline{}$ Vgl. *T. R. Briggs* und *H. W. Gillett*, referiert in Chem. Zbl. 1929 II, 3117.

zum Vergleich reines Kupfer und Silber. Die Legierungen sind gegen chemische Einflüsse durchwegs weniger resistent als die reinen Metalle, wie einige Beispiele (Tabelle 4) zeigen.

Zusammenfassung.

Das Zustandsdiagramm des Systems Cu—Ge wurde überprüft, wobei die Ergebnisse von F. Weibke weitgehend bestätigt wurden. Die Gitterkonstanten der β -Phase (Cu₅Ge) wurden neu vermessen. Im Gegensatz zu V. M. Goldschmidt wurde gefunden, daß Cu₃Ge kein reiner A 3-Typ ist; diese Phase kann mit einer schwach monoklinen Verzerrung der hex. dichten Packung gedeutet werden. Ein Strukturvorschlag wird angegeben.

Im α -Bereich des Systems Ag—Ge wurde eine geringfügige Gitteraufweitung gefunden.

Der grundsätzliche Aufbau des Dreistoffsystems Cu----Ge---Ag wurde ermittelt. Eine ternäre intermetallische Verbindung tritt nicht auf. Es werden mit großer Wahrscheinlichkeit zwei ternäre Eutektika und zwei ternäre Peritektika festgestellt.

Korrosionsuntersuchungen an Legierungen der α -Bereiche der Systeme Cu—Ge, Ag—Ge und Cu—Ge—Ag zeigen gegenüber den reinen Metallen keine Verbesserung.